
Software System for the Mars 2020 
Mission Sampling

and Caching Testbeds
Kyle Edelberg, Paul Backes, Jeffrey Biesiadecki, 

Sawyer Brooks, Daniel Helmick, Won Kim, Todd 
Litwin, Brandon Metz, Jason Reid, Allen Sirota, 

Wyatt Ubellacker, Peter Vieira

March 9, 2018



Background - Mars 2020 Rover Mission

• One objective is to collect sample cores and set them aside on the surface in a 
“cache” for potential subsequent retrieval

• This capability is to be achieved via the Sampling and Caching Subsystem 
(SCS), which is currently under development

1

https://mars.nasa.gov/mars2020/mission/overview/

Objective: Address high-priority science goals for Mars exploration



Background: Sample Caching Subsystem (SCS)

2

http://sites.nationalacademies.org/cs/groups/ssbsite/documents/webpage/ssb_183291.pdf



Outline

1. Goals of this work

1. The CASAH software system

1. Supported testbeds

1. Hardware-software integration

2. Deployment, testing, and lessons learned

1. What next?

3



Testbed Software Objectives

1. Enable repeatable, high throughput testing of prototype hardware 
across a suite of testbeds.

1. Provide a light-weight framework for rapid development of relevant 
algorithms that can be tested on real hardware and inform flight 
software development

1. Allow for non-developers to operate the testbeds.

1. Collect data products that can be easily parsed and archived.

1. Provide robust fault protection to avoid hardware damage.

4



Software Solution

• Why not just use JPL Rover Flight Software (FSW)?
– Long development timeline due to rigorous FSW standards
– Scope does not encompass all testbed objectives
– Operational complexity is high

• Why not use a commercial solution like LabVIEW?
– LabVIEW is designed to operate a wide variety of hardware at a low level
– It does not scale well to high-level algorithms and system level capabilities
– Many components are black-boxes
– It is not relevant to FSW because it is so fundamentally different

• Our solution: Controls and Autonomy for Sample Acquisition and Handling 
(CASAH)
– Implementation of the Intelligent Robotic Systems Architecture (IRSA)
– IRSA mimics JPL Rover Flight Software in the following ways:

1. System is divided into modules, which communicate via message passing
2. Each module is ‘owned’ by a single developer
3. Operator interface to each module is explicitly defined by a command dictionary

– CASAH primarily coded in C language, which is the same as FSW

5



Controls and Autonomy for Sample Acquisition and Handling 
(CASAH)

• Development began in January 2014 
by a team of three

– First deployment in May 2014

• Development has continued to 
present day, with team size growing 
to roughly five

– To date, CASAH has supported 10 
testbeds and 1400+ tests

– Test data has provided invaluable 
feedback to hardware and 
software teams

– Flight-relevant algorithms have 
been developed, iterated, and 
tested

6

Context Diagram for CASAH



CASAH Components

7

ARM

Behavior Modules 50-100Hz

DRILL ACA

User Interface Modules

REMOTE

Hardware Interface 1000Hz

MOT

CMD TLM LAUNCH

Middleware

Autotools

RSAP IPC

CMDGEN

Other
Libraries



Supporting Testbeds with CASAH

8

Top left: Arm and drill (ambient)
Top right: Arm and drill (thermal/vacuum)
Bottom left: Arm docking 
Bottom right: ACA end effector

• 10 testbeds, each with different combination 
of SCS components and distinct objectives

• How do we develop CASAH to support 
different testbeds?

– CASAH is a single repository

– Modules have testbed configuration files

– Testbed is specified at build time



CASAH Development and Hardware-Software Integration

9

Phase I. Initial Development

Create Testbed Configuration

Develop / Modify Module(s) 

Test Functionality Offline

Phase II. Partial Integration

Tune Motors

Setup CASAH for Deployment

Test Low-Level Functionality

Phase III. Full Integration

Test Capabilities (e.g., coring)

Tune / Tweak Algorithms

Phase IV. Maintenance

Fix bugs

Add new features

Advance capabilities Train Operators

• This process grew 
organically

• Tight coupling of 
software-hardware 
teams before and 
during this process 
critical for success



Hardware-Software Integration: A Note About Avionics

10

• CASAH supports only EtherCAT devices

• Avionics are standardized across testbeds (BlueBox)

• Resulting software is maintainable and system debugging is simplified

What is in a blue box?
• COTS motor controllers (Elmo Gold 

Whistles)
• COTS I/O modules (Beckhoffs)
• Power supply
• USB hub

CASAH development station



Results – Testing Throughput

11

Number of tests ran on each SCS testbed. 
Resulting data products have proved invaluable.



Results – Algorithm Transfer to FSW

• ACA, ARM, and DRILL modules are 
now under development in FSW

• Algorithms developed and tested in 
CASAH are being re-written into FSW

• Example: DRILL Seek Surface
– Concept inspired by results seen during 

testing

– Algorithm rapidly implemented and 
rolled into testing with CASAH on all 
testbeds with coring drills

– With proven maturity, algorithm is now 
being coded into the DRILL module in 
FSW

12

Example algorithm: DRILL_SEEK_SURFACE; Developed
in CASAH, currently being coded into Mars 2020 FSW



… But Nothing is Perfect

13

CASAH Deployment: Select issues and resolutions



Summary and Lessons Learned

• Direct porting of code from testbed to FSW would impose harsh constraints on 
testbeds; direct porting of algorithms is a win-win

• Mimicking FSW architecture by implementing IRSA maintains relevancy
– Behavior modules in CASAH are owned by the same people writing them in FSW, and functionality is 

1:1 mapping between the two code bases

– Command dictionary and sequencing enables repeatable, high throughput testing. Generated data 
products are essential for system development.

– Message passing between modules works effectively for time-critical applications

• Early and continuous hardware-software integration is critical for system of this 
complexity 

• Keeping code clean and lightweight pays off:
– Explicitly restrict supported hardware

– Re-write application level code often

– Avoid the temptation to chase the ‘perfect’ software system which never needs modification 

Please refer to paper for full list of specific, technical lessons learned

14



Looking Ahead

• For Mars 2020 SCS S/W development, focus is now Flight Software

– We have developed a system which enables us to directly test SCS FSW 
modules with Blue Boxes; allows for direct comparison to CASAH performance

– CASAH itself is now in maintenance phase

• For testbeds on new projects

– Continue to implement IRSA architecture

– Bulk of CASAH middleware will likely be reused, but application code rewritten

– Lessons learned from CASAH have been captured and will inform new 
implementation

– We continue to monitor the Robot Operating System (ROS) 2.0 for potential 
viability 

15



16

Thank you

Questions?



17

© 2018 California Institute of Technology. Government sponsorship acknowledged.

Reference herein to any specific commercial product, process, or service 
by trade name, trademark, manufacturer, or otherwise, does not 
constitute or imply its endorsement by the United States Government or 
the Jet Propulsion Laboratory, California Institute of Technology.


